CONTROLE DE IRRIGAÇÃO AUTOMATIZADO PARA PEQUENOS PRODUTORES RURAIS COM SISTEMA DE MONITORAMENTO E ARMAZENAMENTO DE DADOS EM TEMPO REAL E REMOTO

Juliane Regina de Oliveira¹ Katia Kazue Takeda Sassaki² Paulo Sergio Pereira Pinto³ Wangner Barbosa da Costa⁴

Introdução

Quando se observa a cronologia da história da agricultura, percebe-se que a irrigação influencia (desde tempos antigos) no aumento de produção de alimentos e concomitantemente no aumento de várias populações, assim como favorece, entre outros, no desenvolvimento e prosperidade de muitos povos. Os Estados Unidos é um ótimo exemplo, sua intervenção através de muitos projetos de irrigação contribuiu com a adequada distribuição de água em várias culturas de diversas localidades, transformando-o, desta forma, em um dos maiores exportadores de alimentos do mundo.

O Brasil está entre os vinte países com maiores áreas irrigadas no mundo. Ambos elencam a divisão da distribuição de irrigação no Brasil em três grupos: a "obrigatória" no Nordeste, devido ao seu clima semiárido; a "facilitada" no Rio Grande do Sul, devido ao clima predominante subtropical úmido, com boa distribuição de chuvas em todas as estações do ano; e a "profissional" nas regiões Sudeste, Sul e Centro-Oeste, regiões com chuvas mal distribuídas (MELLO; SILVA, 2009).

¹ Mestranda em Mídia e Tecnologia FAAC-UNESP/Bauru. Graduanda em Tecnologia em Redes de Computadores – Fatec/Bauru. Tecnóloga em Bancos de Dados. Email: juoliveira95@hotmail.com

² Graduanda em Automação Industrial - Fatec/Bauru. Email: katia.sassaki@fatec.sp.gov.br

³ Especialista em Segurança da Informação — USC/Bauru. Tecnólogo em Redes de Computadores Fatec/Bauru. Docente Etec Rodrigues de Abreu/Bauru. Email: paulo.pereira110@etec.sp.gov.br

⁴ Doutoranda em Ciência e Tecnologia de Materiais – UNESP/Bauru. Mestre em Ciência e Tecnologia de Materiais – UNESP/Bauru. Graduada em Licenciatura em Física. Docente Fatec/Bauru. Email: wangnerbc@gmail.com

Nas cidades de Bauru e região, além dos meses secos (abril a setembro), a irrigação se torna indispensável no período de outubro a março (período de chuvas) quando há a ocorrência do fenômeno denominado veranico (período de estiagem). Neste contexto, é possível através das ciências e da utilização de instrumentos tecnológicos, nortear e auxiliar pequenos agricultores para o controle real e eficiente da distribuição de seus recursos hídricos, de maneira que resulte em melhor produtividade e maior lucratividade, contribuindo na preservação do solo de efeitos negativos ocasionados por irrigação inadequada.

Os projetos existentes são desenvolvidos e implantados com o intuito de atender as necessidades da automatização dos processos da irrigação de monoculturas. Contudo é facilmente observado que, os pequenos agricultores não possuem o controle personalizado e individual das necessidades reais dos diferentes tipos de cultura, como por exemplo, quantidade de água. Fatores como umidade e temperatura do ambiente exercem grande influência na quantidade e frequência da irrigação. Com o conhecimento destas variáveis é possível calcular o volume de água a ser dispensada na irrigação, assim como a sua frequência.

Os objetivos deste projeto é proporcionar aos pequenos agricultores um maior controle da irrigação de inúmeras culturas, por meio da automatização dos processos desta atividade; personalizar a irrigação das culturas de acordo com as suas características e necessidades reais, levando em consideração as características climáticas e do solo da região de cultivo, através de tecnologias livres e baratas; proporcionar gerenciamento e armazenamento das informações através de um sistema *on-line* que garantirá a visualização e a programação da irrigação das plantações.

FUNDAMENTAÇÃO TEÓRICA

Principais tipos de irrigação

Existem vários sistemas de irrigação que determinam qual método mais adequado para a aplicação artificial da água em uma propriedade agrícola. Desse modo, o profissional deve considerar vários aspectos antes de optar por um dos sistemas de irrigação. Entre estes aspectos estão a topografia, o tipo de solo, as necessidades da cultura, o clima, como se dará o fornecimento de água, os fatores humanos, a necessidade de automação, o custo e o benefício. Dentre esses sistemas têm-se: irrigação por superfície, irrigação por aspersão, irrigação localizada e subirrigação.

A irrigação por superfície, também denominada de escoamento por gravidade é subdividida em dois. O quadro 1 apresenta a descrição desses subtipos de irrigação por superfície.

Quadro 1 - Descrição dos subtipos de irrigação por superfície

Subtipos de Irrigação por Superfície	Descrição
Sistemas em Nível	Nesta a água é aplicada em uma superfície plana, com área que disponha de menos de 0,1 % de declive, pode-se optar entre três formas: a) tabuleiro em nível, com formato retangular ou quadrado, cercado por camalhões; b) faixa de contorno, tabuleiros construídos de acordo com o contorno de um terreno; c) sulcos com contorno, com formato semelhante aos tabuleiros de contorno, porém possui sulcos entre as linhas de cultivo.
Sistemas em Declive	Possui em uma de suas direções declividade entre 0,1% a 15%. São elas: a) faixa em declive. Esta é diferente do tabuleiro de contorno apenas quanto à declividade na direção do fluxo; b) canais em contorno. Trata-se de dreno construído em áreas cultivadas; c) sulcos em declive. São sulcos que se apresentam entre fileiras de cultivos; d) corrugação. Plantações em pequenos canais; e) sulcos de contorno. Diferente do sistema sulcos em declive apenas porque os canais são construídos de acordo com contorno de terreno.

Fonte: Adaptado de Andrade, 2003

O sistema de irrigação por aspersão trata-se de um método mecanizado, onde lâminas de água são lançadas ao ar sobre a plantação. Esse sistema também está subdivido em: aspersão convencional, autopropelido, pivô central, deslocamento linear, LEPA e LESA e rolamento lateral.

O quadro 2, descreve os subtipos de irrigação por aspersão.

Quadro 2 - Descrição dos subtipos de irrigação por aspersão

Subtipos de Irrigação por As- persão	Descrição
Aspersão Convencional	Ouando aplicada de forma fixa, as linhas principais e laterais são mantidas na mesma posição; na forma semifixa, as linhas principais são mantidas na mesma posição, enquanto as linhas laterais são móveis.
Autopropelido	Trata-se de um sistema, onde um único canhão é alocado através de um carrinho movimentado manualmente.
Pivô Central	Trata-se de um mecanismo automatizado com deslocamento radial, composto por várias torres. Possuem motores elétricos independentes para controle de acionamento.
Deslocamento Linear	Difere do pivô central quanto seu deslocamento e todas as torres possuem a mesma velocidade, o que determina o fluxo de água aplicado.
LEPA e LESA	São sistemas de pivó central ou deslocamento linear com maior eficiência. No LEPA a água tem contato direto ao solo, enquanto que no LESA a irrigação ocorre sobre a copa da cultura.
Rolamento Lateral	Este é um sistema com mangueira, deslocado de forma linear através de um eixo com rodas metálicas.

Fonte: Adaptado de Andrade, 2003 e Frizzone, 2016

O sistema de irrigação localizada é feito por aplicação da água sobre a região que circunda as raízes da cultura cultivada. A irrigação localizada está dividida em: gotejamento, microaspersão e subsuperficiais. O quadro 3, descreve os subtipos de irrigação localizada.

Quadro 3 - Descrição dos subtipos de irrigação localizada

Subtipos de Irrigação Localizada	Descrição
Gotejamento	Este sistema permite que as culturas recebam quantidade controlada de água sobre o solo, esta é distribuída através de "tubos" que liberam gotas para irrigar a região radicular da planta.
Microaspersão	Esta forma promove a irrigação sobre ou sob as plantas de forma que estas recebam água em forma de névoa através de um sistema rotativo ou fixo.
Subsuperficiais	Os emissores de água, parecidos com gotejadores, estão enterrados no solo, desta forma as plantas recebem irrigação nas regiões que circundam as raízes.

Fonte: Adaptado de Andrade, 2003

O sistema de subirrigação mantém a umidade nas regiões radiculares das culturas por meio da elevação de um lençol freático, ou seja, é aplicado a uma determinada profundidade.

Aplicação da automatização para pequenos agricultores

A mecanização de processos da agricultura familiar promove vários benefícios. Entre estes, possibilita que se produzam ótimos resultados dentro de uma determinada programação de plantio, de acordo com a realidade do mercado interno e externo; permite maior conforto aos seus trabalhadores, e é importante, inclusive, na proteção da saúde dos envolvidos, inclusive, contribuindo na preservação do meio ambiente. (ALVES, MANTOVANI; OLIVEIRA, 2006).

A Tecnologia da Informação (TI) promove para as empresas diversos benefícios incluindo a tão almejada vantagem competitiva, pois proporciona inúmeras facilidades ao decorrer das atividades do empreendimento. É facilmente notado que na agricultura o uso de tecnologias é essencial ao provimento da automatização, gerenciamento e monitoração das atividades agrícolas.

Incentivar e promover aos pequenos agricultores o uso da TI é um grande desafio no setor agropecuário brasileiro. Para tanto faz necessário a identificação das necessidades específicas dos pequenos produtores rurais e também das instituições que os apoiam. Percebe-se a existência de esforços para o convencimento e, consequentemente, o fortalecimento dos produtores rurais, assim como em todo o setor, por meio da adoção de TI. (MENDES; SANTOS, 2010).

Para a adoção da tecnologia é enfrentado muitos empecilhos por parte dos demandantes rurais, em destaque, o desinteresse por *software*, o despreparo do produtor comum, a falta de gestão da propriedade, a falta de diálogo entre

desenvolvedores de *software* e demandantes, a diferença existente entre os produtores e a influência da idade. O cenário brasileiro, porém, indica forte desinteresse tecnológico por parte dos pequenos agricultores. (MENDES; SANTOS, 2010).

MATERIAIS E MÉTODOS

A criação do sistema automatizado de irrigação é envolvida por um programa computacional desenvolvido utilizando a linguagem PHP. O armazenamento das informações, pré configuradas pelos usuários e as produzidas pelo sistema de irrigação, através dos sensores de umidade e temperatura, é feito por meio do banco de dados relacional MySQL. Tanto o programa quanto o banco de dados estão localizados no equipamento Raspberry Pi Model 3.

O módulo de irrigação é constituído pelo Arduino Uno R3 e por sensores de umidade e temperatura. O Arduino Uno R3 é o responsável pelo controle de envio das informações ao aspersor, designado a liberar a água para a irrigação. Os sensores de umidade e temperatura do ar (DTH11) e o sensor de unidade do solo (higrômetro) enviará os respectivos valores para o Arduino.

Os materiais utilizados para a implementação e implantação deste projeto visando à automatização dos processos de irrigação, são:

- a-) MySQL: O MySQL é um Sistema Gerenciador de Banco de Dados (SGBD), conjunto de *softwares* capazes de prover o armazenamento, gerenciamento e disponibilidade dos dados. Este SGBD apresenta código aberto mais popular do mundo e possibilita a entrega econômica de aplicativos de banco de dados confiáveis, de alto desempenho e redimensionáveis, baseado na *web*. (ORACLE, 2016).
- b-) MySQL Workbench: A ferramenta denominada MySQL Workbench é a responsável pela modelagem do banco de dados, desenvolvimento de *Structured Query Language* (SQL), linguagem de consulta estruturada utilizando o SGBD MySQL e ferramentas de administração, envolvendo, configuração de servidores, administração de usuários e *backup*, sendo necessária para a manipulação, acesso aos dados e objetos contidos no banco de dados de Modelo Relacional. (MYSQL, 2016).
- c-) Xampp: O Xampp é um aplicativo que contém Apache (Servidor *web*), MySQL (Banco de dados), PHP: Hypertext Preprocessor (PHP) e Perl (linguagem de programação) (APACHE, 2016).
- d-) PHP: PHP é uma linguagem de *script open source*, especialmente adequada para o desenvolvimento *web* e pode ser embutida dentro da *HyperText Markup Language* (HTML), linguagem de marcação de hipertexto, comumente aproveitada como linguagem para a criação de páginas *web*. (PHP, 2016).
- e-) Arduino Uno R3: O Arduino é uma placa italiana *open source*, tendo o projeto iniciado no ano de 2005, utilizada como plataforma de prototipagem eletrônica que torna a robótica mais acessível a todos. As unidades são constituídas pela controladora Atmel AVR de 8 *bits*, pinos digitais e analógicos de entrada e saída, entrada *Universal Serial Bus* (USB) ou serial (SOARES, 2016).
- f-) Raspberry Pi Model 3: O Raspberry Pi é um pequeno computador desenvolvido pela *The Raspberry Pi Foundation*, uma instituição de caridade do Reino Unido,

com a intenção de fornecer computadores de baixo custo e *software* livre para os estudantes. Seu objetivo final é promover a educação de ciência da computação. Para esta aplicação é utilizado o sistema operacional padrão, denominado Raspbian (RASPBERRY PI BRASIL, 2013).

- g-) DTH11: O sensor DTH11 é o responsável por captar valores de temperatura e umidade do ambiente.
- h-) Higrômetro: responsável pela captação dos valores de umidade do solo.
- i-) Shield Wi-fi: Transmissor e receptor de dados via rede wi-fi padrão 802.11n.

RESULTADOS

A figura 1 descreve o funcionamento básico do sistema automatizado de irrigação do sistema proposto. Os itens 1 e 2, chamados, respectivamente, DTH11 e Higrômetro, responsáveis pelo envio dos dados de temperatura ambiente e a umidade relativa do ar e umidade do solo, por meio de sinais elétricos ao item 3, denominado Arduino Uno R3. O sinal elétrico captado pelo Arduino Uno R3 será decodificado e transformado em dados que serão transmitidos através módulo *Shield Wi-fi*, item 4. O item 5 é um roteador *Wi-fi* que fornecerá o serviço de comunicação via rádio. O item 6 é o Raspeberry Pi Model 3, conterá o programa computacional e o banco de dados, além de ser o receptor do sinal oriundo do módulo remoto (item 4). O sistema poderá ser acessado de qualquer lugar do mundo através da internet, item 7. O acesso permitirá o monitoramento do sistema e consultas estatísticas online através do seu banco de dados. Através de uma página *web* será possível fazer o controle do acionamento das bombas para que os locais sejam irrigados.

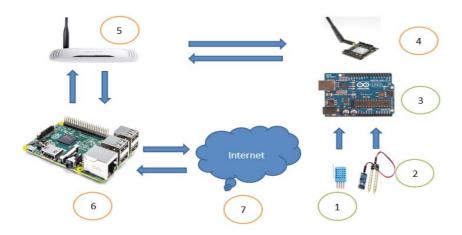


Figura 1. Descrição do funcionamento do sistema de irrigação automatizada

De acordo com a figura 2, o módulo de irrigação pertencente ao sistema automatizado de irrigação, funciona, basicamente, da seguinte maneira: primeiro o item 1, módulo *Shield Wi-fi*, recebe os dados oriundos do controle do banco de dados ou inseridos, manualmente, através da página web, enviando-os ao Arduino Uno R3, item 2. Este emite o comando para o acionamento da bomba, item 3, que liberará o bombeamento de água proveniente do reservatório de água (rio, caixa d'água etc), item 4, para a cultura pré-selecionada, item 5.

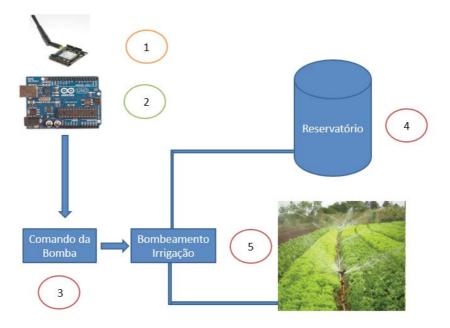


Figura 2. Descrição do funcionamento da irrigação através do sistema de irrigação automatizada

A existência de instrumentos no mercado que exigem altos investimentos, impossibilita os pequenos agricultores de utilizar soluções que visam a um melhor aproveitamento dos seus recursos hídricos, em busca de um aumento de produtividade nas regiões, cujos períodos de estiagem são prologados e/ou irregulares durante o ano. Além disso, adiciona-se a falta de conhecimento sobre tecnologias aplicáveis e disponíveis voltadas a pequenos agricultores, o que dificulta o desenvolvimento de soluções simples e baixo custo de implantação.

Constata-se, ainda, que os conhecimentos adquiridos ao longo dos anos por estes agricultores são transferidos de pai para filho, e isso gera uma resistência a implementação de novas tecnologias e formas de trabalho voltada para os pequenos agricultores.

A figura 3, apresenta um fluxograma que relata um resumo do funcionamento básico do sistema automatizado de irrigação proposto neste trabalho.

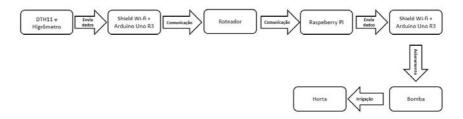


Figura 3. Fluxograma de funcionamento do sistema automatizado de irrigação

A implantação desse sistema viabilizaria o gerenciamento dos recursos hídricos disponíveis de uma forma consciente e necessária para o manejo específico, de acordo com a cultura selecionada. Vale ressaltar que esse gerenciamento proporciona a preservação do meio ambiente com a utilização dos recursos de modo sustentável. É apontado como sugestão para projetos futuros a adoção de um módulo que permite o monitoramento do reservatório de água permitindo um major controle do uso desse recurso.

CONSIDERAÇÕES FINAIS

A irrigação planejada influencia no aumento da produção de alimentos de forma organizada, com melhor aproveitamento dos recursos hídricos e do solo. Nas cidades da região de Bauru é observado a existência de alguns meses de estiagem ao longo do ano. Com a utilização de tecnologias de baixo custo é possível desenvolver solução que auxiliará os pequenos agricultores desde a sua implantação e manutenção, objetivando um melhor aproveitamento dos referidos recursos nos meses de estiagem. É observado que com a adoção de ferramentas livres e com baixo investimentos ocasionam inúmeros benefícios aos pequenos agricultores que podem usufruir de um sistema que permite a automação, o gerenciamento e monitoramento do processo de irrigação.

Referências

ALVES, E.; MANTOVANI, E. C.; OLIVEIRA, A. J. de. **Benefícios da mecanização da agricultura**. Disponível em: http://www.agroexata.com.br/imgs/974c428bd33f6e5a68963cd457fde147.pdf#page=144. Acesso em: 06 maio 2016.

AMORIM, J. R. A. de. **Salinidade em** á**reas irrigadas:** origem do problema, consequências e possíveis soluções. Disponível em: http://www.grupocultivar.com.br/artigos/salinidade-em-areas-irrigadas-origem-do-problema-consequencias-e-possiveis-solucoes>. Acesso em: 01 mar. 2016.

ANDRADE, C. de L. T. de. **Seleção do sistema de irrigação**. Disponível em: https://docsagencia.cnptia.embrapa.br/milho/circular 14-selecao do sistema

de_irrigacao.pdf >. Acesso em: 12 jan. 2016.

APACHE. **O que é XAMPP?**. Disponível em: < https://www.apachefriends.org/pt_br/index.html>. Acesso em: 06 dez. 2016.

FONSECA, F. R. da. **Sensores**. Disponível em: http://www.adororobotica.com/ Sensores.pdf>. Acesso em: 11 ago. 2016.

FRIZZONE, J. A. Irrigação. Disponível em: http://www.leb.esalq.usp.br/disciplinas/Frizzone/LEB_1571/Irrigacao-aula%201.pdf>. Acesso em: 10 ago. 2016. MELLO, J. L. P.; SILVA, L. D. B. da. **Apostila de manejo da irrigação.** Disponível em: http://www.ufrrj.br/institutos/it/deng/leonardo/downloads/APOSTILA/Apostila%20IT%20157/it157-Manejo2000.pdf>. Acesso em: 01 mar. 2016.

MYSQL. **MySQL Workbench**. Disponível em: < http://www.mysql.com/products/workbench/>, Acesso em: 06 dez. 2016.

ORACLE. **MySQL: O Banco de dados de c**ódigo **aberto mais popular do mundo**. Disponível em: http://www.oracle.com/br/products/mysql/resources/index.html>. Acesso em: 9 maio 2016.

PERCÍLIA, E. **Aspectos naturais do Rio Grande do Sul**. Disponível em: http://brasilescola.uol.com.br/brasil/aspectos-naturais-rio-grande-sul.htm. Acesso em: 01 mar. 2016.

PHP. **O que é o PHP?**. Disponível em: https://secure.php.net/manual/pt_BR/ intro-whatis.php>. Acesso em: 9 maio 2016.

RASPBERRY PI BRASIL. **O que é Raspberry Pi?**. Disponível em: http://raspberrypibra.com/o-que-e-raspberry-pi-4.html>. Acesso em: 9 maio 2016.

SANTOS, A. R. dos; MENDES, C. I. C. **O pequeno agricultor e o uso de tecnologias da informação.** Disponível em: https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/868655/1/p056.pdf> Acesso em: 08 mar. 2016.

SOARES, K. **O que é um Arduino e o que pode ser feito com ele?**. Disponível em: http://www.techtudo.com.br/noticias/noticia/2013/10/o-que-e-um-arduino-e-o-que-pode-ser-feito-com-ele.html. Acesso em: 9 maio 2016.

THOMAZINI, D.; ALBUQUERQUE, P. U. B. de. **Sensores industriais, fundamentos e aplicações**. 6. ed. São Paulo: Érica, 2009.

WEGNER, V. N. **Irrigação Localizada.** Disponível em: http://atividaderural.com. br/artigos/50577bd60b476.pdf>. Acesso em: 11 ago. 2016.